FINAL: ALGEBRA III

Date: 21st December 2020
Please do not consult anyone. You may use the text books or class notes. Please do not use any other resource.

The Total points is $\mathbf{8 5}$. The maximum you can score is 80 .
(1) (20 points) Let $R=(\mathbb{Z} / 12 \mathbb{Z})[x]$ be the polynomial ring over $\mathbb{Z} / 12 \mathbb{Z}$. Compute the nilradical of R. Prove or disprove the following statement. Every nonzero R-module contains a nonzero torsion element.
(2) (20 points) Let $R=\mathbb{Q}[x, y, z]$ be a polynomial ring in 3 variables, $I=(x, y)$, $J=(z)$ and $m=(x, y, z)$ be ideals of R. Let $M=m / J \oplus R[1 / x]$. Show that $M / I M$ is a finite dimensional \mathbb{Q}-vector space. Also compute its dimension.
(3) (20 points) Determine whether the following rings are an integral domain, a PID or a UFD. Justify your answer.
(a) $A=(\mathbb{Z} / 45 \mathbb{Z})[x, y, z] /\left(3 x-1, z^{3} x-x^{2} y z+x^{3} y\right)$
(b) $B=(\mathbb{Z} / 5 \mathbb{Z})[x, y, z] /\left(3 x-1, z^{3} x-x^{2} y z+x^{3} y\right)$
(c) $C=(\mathbb{Z} / 9 \mathbb{Z})[x, y, z] /\left(3 x-1, z^{3} x-x^{2} y z+x^{3} y\right)$
(d) $D=\mathbb{Z}[x, y, z] /\left(3 x-1, z^{3} x-x^{2} y z+x^{3} y\right)$
(4) (25 points) Let $V_{1}=\mathbb{C}[y] /\left(y^{2}\left(y^{2}-1\right)\left(y^{3}-1\right)\right), V_{2}=\mathbb{C}[z] /\left(z^{3}-z^{2}\right)$ and $V=V_{1} \oplus V_{2}$ be \mathbb{C}-vector spaces. Let $\phi_{1}: V_{1} \rightarrow V_{1}, \phi_{2}: V_{2} \rightarrow V_{2}$ and $\phi:$ $V \rightarrow V$ be given by $\phi_{1}\left(v_{1}\right)=\bar{y} v_{1}, \phi_{2}\left(v_{2}\right)=\bar{z} v_{2}$ and $\phi\left(v_{1}, v_{2}\right)=\left(\bar{y} v_{1}, \bar{z} v_{2}\right)$ $\forall v_{1} \in V_{1}, \forall v_{2} \in V_{2}$ respectively. Find the rational canonical and the Jordan canonical forms of ϕ_{1}, ϕ_{2} and ϕ.

